3.6.42 \(\int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx\) [542]

3.6.42.1 Optimal result
3.6.42.2 Mathematica [A] (verified)
3.6.42.3 Rubi [A] (verified)
3.6.42.4 Maple [F]
3.6.42.5 Fricas [F]
3.6.42.6 Sympy [F]
3.6.42.7 Maxima [F(-2)]
3.6.42.8 Giac [F]
3.6.42.9 Mupad [F(-1)]

3.6.42.1 Optimal result

Integrand size = 32, antiderivative size = 222 \[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=-\frac {1}{4} b^2 x \sqrt {d+c d x} \sqrt {e-c e x}+\frac {b^2 \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)}{4 c \sqrt {1-c^2 x^2}}-\frac {b c x^2 \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))}{2 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2+\frac {\sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^3}{6 b c \sqrt {1-c^2 x^2}} \]

output
-1/4*b^2*x*(c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)+1/2*x*(c*d*x+d)^(1/2)*(-c*e*x+ 
e)^(1/2)*(a+b*arcsin(c*x))^2+1/4*b^2*arcsin(c*x)*(c*d*x+d)^(1/2)*(-c*e*x+e 
)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/2*b*c*x^2*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2) 
*(-c*e*x+e)^(1/2)/(-c^2*x^2+1)^(1/2)+1/6*(a+b*arcsin(c*x))^3*(c*d*x+d)^(1/ 
2)*(-c*e*x+e)^(1/2)/b/c/(-c^2*x^2+1)^(1/2)
 
3.6.42.2 Mathematica [A] (verified)

Time = 1.83 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.30 \[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=\frac {4 b^2 \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)^3-12 a^2 \sqrt {d} \sqrt {e} \sqrt {1-c^2 x^2} \arctan \left (\frac {c x \sqrt {d+c d x} \sqrt {e-c e x}}{\sqrt {d} \sqrt {e} \left (-1+c^2 x^2\right )}\right )+6 b \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x) (b \cos (2 \arcsin (c x))+2 a \sin (2 \arcsin (c x)))+6 b \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)^2 (2 a+b \sin (2 \arcsin (c x)))+3 \sqrt {d+c d x} \sqrt {e-c e x} \left (4 a^2 c x \sqrt {1-c^2 x^2}+2 a b \cos (2 \arcsin (c x))-b^2 \sin (2 \arcsin (c x))\right )}{24 c \sqrt {1-c^2 x^2}} \]

input
Integrate[Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2,x]
 
output
(4*b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^3 - 12*a^2*Sqrt[d]*Sqrt 
[e]*Sqrt[1 - c^2*x^2]*ArcTan[(c*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/(Sqrt[d 
]*Sqrt[e]*(-1 + c^2*x^2))] + 6*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c* 
x]*(b*Cos[2*ArcSin[c*x]] + 2*a*Sin[2*ArcSin[c*x]]) + 6*b*Sqrt[d + c*d*x]*S 
qrt[e - c*e*x]*ArcSin[c*x]^2*(2*a + b*Sin[2*ArcSin[c*x]]) + 3*Sqrt[d + c*d 
*x]*Sqrt[e - c*e*x]*(4*a^2*c*x*Sqrt[1 - c^2*x^2] + 2*a*b*Cos[2*ArcSin[c*x] 
] - b^2*Sin[2*ArcSin[c*x]]))/(24*c*Sqrt[1 - c^2*x^2])
 
3.6.42.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.66, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {5178, 5156, 5138, 262, 223, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {c d x+d} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx\)

\(\Big \downarrow \) 5178

\(\displaystyle \frac {\sqrt {c d x+d} \sqrt {e-c e x} \int \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2dx}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5156

\(\displaystyle \frac {\sqrt {c d x+d} \sqrt {e-c e x} \left (\frac {1}{2} \int \frac {(a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx-b c \int x (a+b \arcsin (c x))dx+\frac {1}{2} x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {\sqrt {c d x+d} \sqrt {e-c e x} \left (-b c \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \int \frac {x^2}{\sqrt {1-c^2 x^2}}dx\right )+\frac {1}{2} \int \frac {(a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx+\frac {1}{2} x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\sqrt {c d x+d} \sqrt {e-c e x} \left (-b c \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \left (\frac {\int \frac {1}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )\right )+\frac {1}{2} \int \frac {(a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx+\frac {1}{2} x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\sqrt {c d x+d} \sqrt {e-c e x} \left (\frac {1}{2} \int \frac {(a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx+\frac {1}{2} x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-b c \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )\right )\right )}{\sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5152

\(\displaystyle \frac {\sqrt {c d x+d} \sqrt {e-c e x} \left (\frac {1}{2} x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-b c \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )\right )+\frac {(a+b \arcsin (c x))^3}{6 b c}\right )}{\sqrt {1-c^2 x^2}}\)

input
Int[Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2,x]
 
output
(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*((x*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]) 
^2)/2 + (a + b*ArcSin[c*x])^3/(6*b*c) - b*c*((x^2*(a + b*ArcSin[c*x]))/2 - 
 (b*c*(-1/2*(x*Sqrt[1 - c^2*x^2])/c^2 + ArcSin[c*x]/(2*c^3)))/2)))/Sqrt[1 
- c^2*x^2]
 

3.6.42.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5156
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[x*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/2), x] + (Simp[(1/2 
)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]]   Int[(a + b*ArcSin[c*x])^n/Sqrt[ 
1 - c^2*x^2], x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2 
]]   Int[x*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x 
] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
 

rule 5178
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) 
 + (g_.)*(x_))^(q_), x_Symbol] :> Simp[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^ 
2)^q)   Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 
- e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
 
3.6.42.4 Maple [F]

\[\int \sqrt {c d x +d}\, \sqrt {-c e x +e}\, \left (a +b \arcsin \left (c x \right )\right )^{2}d x\]

input
int((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x)
 
output
int((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x)
 
3.6.42.5 Fricas [F]

\[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=\int { \sqrt {c d x + d} \sqrt {-c e x + e} {\left (b \arcsin \left (c x\right ) + a\right )}^{2} \,d x } \]

input
integrate((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorith 
m="fricas")
 
output
integral((b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(c*d*x + d)*sqr 
t(-c*e*x + e), x)
 
3.6.42.6 Sympy [F]

\[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=\int \sqrt {d \left (c x + 1\right )} \sqrt {- e \left (c x - 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}\, dx \]

input
integrate((c*d*x+d)**(1/2)*(-c*e*x+e)**(1/2)*(a+b*asin(c*x))**2,x)
 
output
Integral(sqrt(d*(c*x + 1))*sqrt(-e*(c*x - 1))*(a + b*asin(c*x))**2, x)
 
3.6.42.7 Maxima [F(-2)]

Exception generated. \[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorith 
m="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.6.42.8 Giac [F]

\[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=\int { \sqrt {c d x + d} \sqrt {-c e x + e} {\left (b \arcsin \left (c x\right ) + a\right )}^{2} \,d x } \]

input
integrate((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorith 
m="giac")
 
output
integrate(sqrt(c*d*x + d)*sqrt(-c*e*x + e)*(b*arcsin(c*x) + a)^2, x)
 
3.6.42.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {d+c d x} \sqrt {e-c e x} (a+b \arcsin (c x))^2 \, dx=\int {\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {d+c\,d\,x}\,\sqrt {e-c\,e\,x} \,d x \]

input
int((a + b*asin(c*x))^2*(d + c*d*x)^(1/2)*(e - c*e*x)^(1/2),x)
 
output
int((a + b*asin(c*x))^2*(d + c*d*x)^(1/2)*(e - c*e*x)^(1/2), x)